Energy-Transfer Features for Pedestrian Detection
نویسندگان
چکیده
In this paper, we propose an interesting and novel method for computing the image features that are useful for object detection. The method is interesting and novel in the terms of the feature vector dimensionality and object information capturing. In the proposed method, the areas of objects (that contain the important information useful for recognition) are described by the distribution of energy. The energy is transfered through the energy sources that are placed into the image and the distribution of energy is encoded into a vector of features. The vector is then used as an input for the SVM classifier. Using this approach, the objects of interest can be successfully described with a relatively small set of numbers if compared with the state-of-the-art descriptors that are based on the histograms of oriented gradients. We show the robustness of the features in the task of pedestrian detection.
منابع مشابه
Pedestrian Detection in Infrared Outdoor Images Based on Atmospheric Situation Estimation
Observation in absolute darkness and daytime under every atmospheric situation is one of the advantages of thermal imaging systems. In spite of increasing trend of using these systems, there are still lots of difficulties in analysing thermal images due to the variable features of pedestrians and atmospheric situations. In this paper an efficient method is proposed for detecting pedestrians in ...
متن کاملExploring Prior Knowledge for Pedestrian Detection
Pedestrian detection is a classical and hot issue in object detection. Many approaches have been proposed in this area. However, it remains a challenging problem due to the variances in lighting conditions, scene structures, clothes, view angles, postures, scales, occlusions, etc. Previous survey [1] has summarized that using better features plays an important role in improving detection qualit...
متن کاملFloat Cascade Method for Pedestrian Detection
A novel pedestrian detection method based on the Four Direction Features (FDF), called FloatCascade pedestrian detection, is proposed for the pedestrian detection problem, which can be applied to the pedestrian detection problem in a single image. The FDF can represent pedestrian well, and the computation cost is lower than the HOG’s. FloatCascade applies the plus-l-minus-r method to select the...
متن کاملPedestrian Detection in Thermal Images Using Adaptive Fuzzy C-Means Clustering and Convolutional Neural Networks
Pedestrian detection is paramount for advanced driver assistance systems (ADAS) and autonomous driving. As a key technology in computer vision, it also finds many other applications, such as security and surveillance etc. Generally, pedestrian detection is conducted for images in visible spectrum, which are not suitable for night time detection. Infrared (IR) or thermal imaging is often adopted...
متن کاملSuperpixels in Pedestrian Detection from Stereo Images in Urban Traffic Scenarios
Pedestrian detection is a common task in every driving assistance system. The main goal resides in obtaining a high accuracy detection in a reasonable amount of processing time. This paper proposes a novel method for superpixel-based pedestrian hypotheses generation and their validation through feature classification. We analyze the possibility of using superpixels in pedestrian detection by in...
متن کامل